42 research outputs found

    Quantum optomechanics beyond the quantum coherent oscillation regime

    Full text link
    Interaction with a thermal environment decoheres the quantum state of a mechanical oscillator. When the interaction is sufficiently strong, such that more than one thermal phonon is introduced within a period of oscillation, quantum coherent oscillations are prevented. This is generally thought to preclude a wide range of quantum protocols. Here, we introduce a pulsed optomechanical protocol that allows ground state cooling, general linear quantum non-demolition measurements, optomechanical state swaps, and quantum state preparation and tomography without requiring quantum coherent oscillations. Finally we show how the protocol can break the usual thermal limit for sensing of impulse forces.Comment: 6 pages, 3 figure

    Quantum and Classical Phases in Optomechanics

    Get PDF
    The control of quantum systems requires the ability to change and read-out the phase of a system. The non-commutativity of canonical conjugate operators can induce phases on quantum systems, which can be employed for implementing phase gates and for precision measurements. Here we study the phase acquired by a radiation field after its radiation pressure interaction with a mechanical oscillator, and compare the classical and quantum contributions. The classical description can reproduce the nonlinearity induced by the mechanical oscillator and the loss of correlations between mechanics and optical field at certain interaction times. Such features alone are therefore insufficient for probing the quantum nature of the interaction. Our results thus isolate genuine quantum contributions of the optomechanical interaction that could be probed in current experiments.Comment: 10 pages, 3 figure

    Contents

    Get PDF
    We introduce the `displacemon' electromechanical architecture that comprises a vibrating nanobeam, e.g. a carbon nanotube, flux coupled to a superconducting qubit. This platform can achieve strong and even ultrastrong coupling enabling a variety of quantum protocols. We use this system to describe a protocol for generating and measuring quantum interference between two trajectories of a nanomechanical resonator. The scheme uses a sequence of qubit manipulations and measurements to cool the resonator, apply an effective diffraction grating, and measure the resulting interference pattern. We simulate the protocol for a realistic system consisting of a vibrating carbon nanotube acting as a junction in a superconducting qubit, and we demonstrate the feasibility of generating a spatially distinct quantum superposition state of motion containing more than 10610^6 nucleons.Comment: 12 pages, 7 figure

    Position measurement and the nonlinear regime of cavity quantum optomechanics

    Full text link
    Position measurement is central to cavity quantum optomechanics and underpins a wide array of sensing technologies and tests of fundamental physics. Excitingly, several optomechanics experiments are now entering the highly sought nonlinear regime where optomechanical interactions are large even for low light levels. Within this regime, new quantum phenomena and improved performance may be achieved, however, an approach for mechanical position measurement and a corresponding nonlinear theoretical toolbox are needed to unlock these capabilities. Here, we develop a framework of cavity quantum optomechanics that captures the nonlinearities of both the radiation-pressure interaction and the cavity response and propose how position measurement can be performed in this regime. Our proposal utilizes optical general-dyne detection to obtain mechanical position information imprinted onto both the optical amplitude and phase quadratures and enables both pulsed and continuous modes of operation. Moreover, our proposal and theoretical framework are readily applicable to current and near-future experiments and will allow a range of advances to be made in e.g. quantum metrology, explorations of the standard quantum limit, and quantum measurement and control.Comment: Main and supplemental material in single file. 20 pages, 7 figure

    Mechanical squeezing via fast continuous measurement

    Full text link
    We revisit quantum state preparation of an oscillator by continuous linear position measurement. Quite general analytical expressions are derived for the conditioned state of the oscillator. Remarkably, we predict that quantum squeezing is possible outside of both the backaction dominated and quantum coherent oscillation regimes, relaxing experimental requirements even compared to ground-state cooling. This provides a new way to generate non-classical states of macroscopic mechanical oscillators, and opens the door to quantum sensing and tests of quantum macroscopicity at room temperature

    Coherent suppression of backscattering in optical microresonators

    Get PDF
    As light propagates along a waveguide, a fraction of the field can be reflected by Rayleigh scatterers. In high quality-factor whispering-gallery-mode microresonators, this intrinsic backscattering is primarily caused by either surface or bulk material imperfections. For several types of microresonator-based experiments and applications, minimal backscattering in the cavity is of critical importance, and thus the ability to suppress the backscattering is essential. We demonstrate that introducing an additional scatterer in the near-field of a high-quality-factor microresonator can coherently suppress the amount of backscattering in a microresonator by more than 30 dB. The method relies on controlling the scatterer's position in order for the intrinsic and scatterer-induced backpropagating fields to destructively interfere. This technique is useful in microresonator applications where backscattering is currently limiting the performance of devices, such as ring-laser gyroscopes and dual frequency combs that both suffer from injection locking. Moreover, these findings are of interest for integrated photonic circuits in which backreflections could negatively impact the stability of laser sources or other components

    Can the displacemon device test objective collapse models?

    Get PDF
    Testing the limits of the applicability of quantum mechanics will deepen our understanding of the universe and may shed light on the interplay between quantum mechanics and gravity. At present there is a wide range of approaches for such macroscopic tests spanning from matter-wave interferometry of large molecules to precision measurements of heating rates in the motion of micro-scale cantilevers. The “displacemon” is a proposed electromechanical device consisting of a mechanical resonator flux-coupled to a superconducting qubit enabling generation and readout of mechanical quantum states. In the original proposal, the mechanical resonator was a carbon nanotube, containing 106 nucleons. Here, in order to probe quantum mechanics at a more macroscopic scale, we propose using an aluminum mechanical resonator on two larger mass scales, one inspired by the Marshall–Simon–Penrose–Bouwmeester moving-mirror proposal, and one set by the Planck mass. For such a device, we examine the experimental requirements needed to perform a more macroscopic quantum test and thus feasibly detect the decoherence effects predicted by two objective collapse models: Diósi–Penrose and continuous spontaneous localization. Our protocol for testing these two theories takes advantage of the displacemon architecture to create non-Gaussian mechanical states out of equilibrium with their environment and then analyzes the measurement statistics of a superconducting qubit. We find that with improvements to the fabrication and vibration sensitivities of these electromechanical devices, the displacemon device provides a new route to feasibly test decoherence mechanisms beyond standard quantum theory

    Single-phonon addition and subtraction to a mechanical thermal state

    Get PDF
    Adding or subtracting a single quantum of excitation to a thermal state of a bosonic system has the counter-intuitive effect of approximately doubling its mean occupation. We perform the first experimental demonstration of this effect outside optics by implementing single-phonon addition and subtraction to a thermal state of a mechanical oscillator via Brillouin optomechanics in an optical whispering-gallery microresonator. Using a detection scheme that combines single-photon counting and optical heterodyne detection, we observe this doubling of the mechanical thermal fluctuations to a high precision. The capabilities of this joint click-dyne detection scheme adds a significant new dimension for optomechanical quantum science and applications
    corecore